Trace Agent
Overview
The Trace Agent is responsible for logging, monitoring, and analyzing the game's state changes, player actions, and system events. It provides essential debugging information and analytics capabilities.
Core Architecture
graph TD
subgraph Trace Agent
TA[Trace Agent] --> TM[Trace Manager]
TA --> AM[Analytics Module]
end
subgraph Components
AM --> DL[Data Logger]
AM --> SA[Stats Analyzer]
AM --> PM[Performance Monitor]
end
TA --> |Logs| Storage[Storage System]
TA --> |Analyzes| State[Game State]
Key Components
Trace System
-
Event Logging
- State changes
- Player actions
- System events
-
Analytics
- Performance metrics
- Player statistics
- System health
-
Monitoring
- Real-time tracking
- Error detection
- Resource usage
class TraceAgent:
async def log_event(
self,
event_type: str,
data: Dict[str, Any],
metadata: Optional[Dict] = None
) -> None:
timestamp = datetime.utcnow().isoformat()
trace_entry = TraceEntry(
timestamp=timestamp,
event_type=event_type,
data=data,
metadata=metadata or {}
)
await self.trace_manager.store_trace(trace_entry)
Analytics System
The Trace Agent processes data through multiple stages:
- Data Collection
- Event capture
- State snapshots
-
Performance metrics
-
Analysis
- Pattern detection
- Trend analysis
-
Anomaly detection
-
Reporting
- Stats generation
- Alert triggering
- Log aggregation
Trace Flow
sequenceDiagram
participant AG as Game Agents
participant TA as Trace Agent
participant TM as Trace Manager
participant ST as Storage
AG->>TA: Log Event
par Processing
TA->>TA: Format Data
TA->>TA: Add Metadata
TA->>TA: Validate Entry
end
TA->>TM: Store Trace
TM->>ST: Persist Data
opt Analytics
TA->>TA: Analyze Patterns
TA->>TA: Generate Stats
end
Best Practices
- Logging Strategy
- Structured logging
- Context preservation
-
Performance impact
-
Data Management
- Efficient storage
- Data rotation
-
Privacy compliance
-
Analysis
- Real-time processing
- Pattern detection
- Resource efficiency
Error Handling
The Trace Agent implements robust error handling:
try:
# Log trace entry
await self._log_entry(entry)
# Process analytics if needed
if entry.requires_analysis:
await self._process_analytics(entry)
except TraceError as e:
logger.error("Trace error: {}", str(e))
# Use fallback logging
await self._fallback_log(entry, error=str(e))
except Exception as e:
logger.error("Unexpected error in trace: {}", str(e))
# Ensure critical data is not lost
await self._emergency_log(entry)
Performance Considerations
- Logging Optimization
- Batch processing
- Async logging
-
Buffer management
-
Storage Strategy
- Data compression
- Index optimization
-
Cleanup policies
-
Resource Management
- Memory efficiency
- I/O optimization
- CPU utilization
Integration Points
- Story Graph
- Workflow tracking
- State transitions
-
Event logging
-
State Manager
- State changes
- History tracking
-
Checkpoint logging
-
Other Agents
- Action logging
- Decision tracking
- Error reporting
Analytics Features
The Trace Agent provides various analytics capabilities:
class Analytics:
async def analyze_patterns(self, timeframe: str) -> Dict[str, Any]:
"""Analyze patterns in traced data."""
return await self._pattern_analysis(timeframe)
async def generate_stats(self) -> Dict[str, Any]:
"""Generate statistical reports."""
return await self._stats_generation()
async def detect_anomalies(self) -> List[Anomaly]:
"""Detect anomalies in system behavior."""
return await self._anomaly_detection()
Monitoring System
The agent includes a comprehensive monitoring system:
class Monitor:
def __init__(self):
self.metrics: Dict[str, Metric] = {}
self.alerts: List[Alert] = []
self.thresholds: Dict[str, float] = {}
async def check_health(self) -> HealthStatus:
"""Check system health metrics."""
return await self._health_check()
async def trigger_alert(self, condition: str) -> None:
"""Trigger system alerts."""
await self._alert_handling(condition)