Skip to content

Core Managers

Overview

Core managers form the backbone of the system, providing essential services for state management, caching, workflow control, and agent coordination.

Agent Manager

graph TD
    subgraph Agent Manager
        AM[Agent Manager] --> LC[Lifecycle Control]
        AM --> DI[Dependency Injection]
        AM --> EC[Event Coordination]
    end

    subgraph Services
        LC --> |Manages| AG[Agents]
        DI --> |Injects| DP[Dependencies]
        EC --> |Coordinates| EV[Events]
    end

    AM --> |Uses| SM[State Manager]
    AM --> |Uses| CM[Cache Manager]
    AM --> |Uses| WM[Workflow Manager]

Key Responsibilities

  • Agent Lifecycle

    • Initialization
    • Resource allocation
    • Shutdown handling
    • Health monitoring
  • Dependency Management

    • Service registration
    • Dependency resolution
    • Scope management
    • Circular dependency handling
  • Event System

    • Event propagation
    • Error handling
    • State synchronization
    • Performance monitoring

State Manager

graph TD
    subgraph State Manager
        SM[State Manager] --> SL[State Lifecycle]
        SM --> TM[Transaction Manager]
        SM --> VM[Version Manager]
    end

    subgraph State Services
        SL --> |Manages| ST[States]
        TM --> |Controls| TR[Transactions]
        VM --> |Tracks| VE[Versions]
    end

    SM --> |Uses| PS[Persistence]
    SM --> |Uses| VA[Validation]

Key Features

  • State Lifecycle

    • Creation
    • Updates
    • Validation
    • Cleanup
  • Transaction Management

    • ACID properties
    • Rollback support
    • Conflict resolution
    • Consistency checks
  • Version Control

    • State versioning
    • History tracking
    • Rollback capabilities
    • Audit trails

Cache Manager

graph TD
    subgraph Cache Manager
        CM[Cache Manager] --> MM[Memory Manager]
        CM --> CI[Cache Invalidation]
        CM --> PM[Performance Monitor]
    end

    subgraph Cache Services
        MM --> |Manages| ME[Memory]
        CI --> |Controls| IV[Invalidation]
        PM --> |Monitors| PE[Performance]
    end

    CM --> |Uses| ST[Storage]
    CM --> |Uses| AN[Analytics]

Core Features

  • Memory Management

    • Resource allocation
    • Memory monitoring
    • Cleanup strategies
    • Optimization
  • Cache Control

    • Invalidation rules
    • Update strategies
    • Priority management
    • Size control
  • Performance

    • Metrics collection
    • Optimization
    • Bottleneck detection
    • Resource planning

Workflow Manager

graph TD
    subgraph Workflow Manager
        WM[Workflow Manager] --> FC[Flow Control]
        WM --> TM[Transition Manager]
        WM --> EM[Event Manager]
    end

    subgraph Workflow Services
        FC --> |Controls| FL[Flow]
        TM --> |Manages| TR[Transitions]
        EM --> |Handles| EV[Events]
    end

    WM --> |Uses| SM[State Manager]
    WM --> |Uses| VA[Validation]

Key Components

  • Flow Control

    • Process definition
    • Flow validation
    • State transitions
    • Error handling
  • Transition System

    • State machine
    • Validation rules
    • Event handling
    • Recovery mechanisms
  • Event Management

    • Event routing
    • Processing rules
    • Error recovery
    • Monitoring

Integration Patterns

Inter-Manager Communication

class CoreManager:
    async def coordinate(self, event: Event) -> Result:
        # Validate with state manager
        if await self.state_manager.validate(event):
            # Update cache
            await self.cache_manager.update(event)

            # Process workflow
            result = await self.workflow_manager.process(event)

            # Update state
            await self.state_manager.update(result)

            return result

Error Handling

class CoreManager:
    async def handle_error(self, error: Exception) -> None:
        # Log error
        await self.trace_manager.log_error(error)

        # Cleanup resources
        await self.cleanup()

        # Notify other managers
        await self.notify_error(error)

        # Attempt recovery
        await self.recover()

Best Practices

  1. Resource Management

    • Proper initialization
    • Clean shutdown
    • Resource pooling
    • Memory optimization
  2. Error Handling

    • Graceful degradation
    • Recovery strategies
    • Error boundaries
    • Logging and monitoring
  3. Performance

    • Caching strategies
    • Resource optimization
    • Bottleneck prevention
    • Monitoring and profiling
  4. Integration

    • Clear interfaces
    • Proper abstraction
    • Dependency management
    • Event coordination