AI Integration
Overview
Deep dive into AI integration capabilities of CASYS RPG, including custom models, advanced processing, and optimization techniques.
Language Models
Model Configuration
class ModelConfig:
"""Language model configuration."""
model_name: str = "gpt-4o-mini"
temperature: float = 0.7
max_tokens: int = 2048
stop_sequences: List[str] = []
class Prompts:
system: str = "You are a game master..."
context: str = "Current game state..."
format: str = "Response format..."
-
Model Selection
- Model capabilities
- Performance characteristics
- Resource requirements
-
Parameter Tuning
- Temperature
- Token limits
- Response formatting
Prompt Engineering
%%{init: {'theme': 'default', 'themeVariables': { 'fontFamily': 'Roboto' }}}%%
flowchart TD
subgraph PC[Prompt Components]
SY[System Prompt]
CO[Context]
HI[History]
FO[Format]
end
subgraph PR[Processing]
TO[Tokenization]
OP[Optimization]
VA[Validation]
end
PC --> TO
PC --> OP
PC --> VA
style PC fill:#f9f9f9,stroke:#333,stroke-width:2px
style PR fill:#f9f9f9,stroke:#333,stroke-width:2px
style SY fill:#6200ea,stroke:#6200ea,color:#fff
style CO fill:#6200ea,stroke:#6200ea,color:#fff
style HI fill:#6200ea,stroke:#6200ea,color:#fff
style FO fill:#6200ea,stroke:#6200ea,color:#fff
style TO fill:#6200ea,stroke:#6200ea,color:#fff
style OP fill:#6200ea,stroke:#6200ea,color:#fff
style VA fill:#6200ea,stroke:#6200ea,color:#fff
-
Prompt Structure
- System prompts
- Context injection
- Response formatting
-
Optimization
- Token efficiency
- Context management
- Response quality
Advanced Processing
Context Management
class ContextManager:
"""Manages AI context and history."""
def __init__(self, max_tokens: int = 4096):
self.history: List[Message] = []
self.max_tokens = max_tokens
def add_message(self, message: Message):
"""Add message while managing context window."""
while self.total_tokens > self.max_tokens:
self.history.pop(0)
self.history.append(message)
-
Context Window
- Size management
- History pruning
- Relevance scoring
-
Memory Management
- Short-term memory
- Long-term storage
- Context retrieval
Response Generation
%%{init: {'theme': 'default', 'themeVariables': { 'fontFamily': 'Roboto' }}}%%
flowchart LR
subgraph IN[Input]
PR[Prompt]
CO[Context]
end
subgraph PR[Processing]
TO[Token Processing]
GE[Generation]
end
subgraph OUT[Output]
RE[Response]
ME[Metadata]
end
IN --> TO
TO --> GE
GE --> OUT
style IN fill:#f9f9f9,stroke:#333,stroke-width:2px
style PR fill:#f9f9f9,stroke:#333,stroke-width:2px
style OUT fill:#f9f9f9,stroke:#333,stroke-width:2px
style PR fill:#6200ea,stroke:#6200ea,color:#fff
style CO fill:#6200ea,stroke:#6200ea,color:#fff
style TO fill:#6200ea,stroke:#6200ea,color:#fff
style GE fill:#6200ea,stroke:#6200ea,color:#fff
style RE fill:#6200ea,stroke:#6200ea,color:#fff
style ME fill:#6200ea,stroke:#6200ea,color:#fff
-
Generation Pipeline
- Input processing
- Response generation
- Output formatting
-
Quality Control
- Response validation
- Format checking
- Error handling
Custom Agents
Agent Configuration
class AgentConfig:
"""AI agent configuration."""
name: str
role: str
capabilities: List[str]
model_config: ModelConfig
prompt_templates: Dict[str, str]
def get_prompt(self, context: Dict) -> str:
"""Generate contextualized prompt."""
template = self.prompt_templates[context["type"]]
return template.format(**context)
-
Agent Types
- Specialized roles
- Custom behaviors
- Integration points
-
Configuration
- Model settings
- Prompt templates
- Processing rules
Integration Points
%%{init: {'theme': 'default', 'themeVariables': { 'fontFamily': 'Roboto' }}}%%
flowchart TD
subgraph AG[Agents]
SA[Story Agent]
RA[Rules Agent]
DA[Decision Agent]
NA[Narrator Agent]
end
subgraph AI[AI Integration]
PR[Prompt Engine]
LL[LLM Interface]
CA[Cache]
end
AG <--> PR
PR <--> LL
LL <--> CA
style AG fill:#f9f9f9,stroke:#333,stroke-width:2px
style AI fill:#f9f9f9,stroke:#333,stroke-width:2px
style SA fill:#6200ea,stroke:#6200ea,color:#fff
style RA fill:#6200ea,stroke:#6200ea,color:#fff
style DA fill:#6200ea,stroke:#6200ea,color:#fff
style NA fill:#6200ea,stroke:#6200ea,color:#fff
style PR fill:#6200ea,stroke:#6200ea,color:#fff
style LL fill:#6200ea,stroke:#6200ea,color:#fff
style CA fill:#6200ea,stroke:#6200ea,color:#fff
-
Communication
- Inter-agent messaging
- State sharing
- Event handling
-
Coordination
- Task distribution
- Resource management
- Error handling
Performance Optimization
Caching
class ResponseCache:
"""Caches AI responses."""
def __init__(self, capacity: int = 1000):
self.cache = LRUCache(capacity)
def get_response(self, prompt: str) -> Optional[str]:
"""Get cached response if available."""
key = self.hash_prompt(prompt)
return self.cache.get(key)
-
Cache Strategies
- Response caching
- Context caching
- Cache invalidation
-
Optimization
- Memory usage
- Response time
- Resource efficiency
Async Processing
-
Parallel Processing
- Task distribution
- Resource management
- Result aggregation
-
Queue Management
- Priority queues
- Rate limiting
- Error handling
Best Practices
Development
-
Code Organization
- Clear structure
- Documentation
- Testing
-
Error Handling
- Graceful degradation
- Error recovery
- Logging
Deployment
-
Resource Management
- CPU usage
- Memory allocation
- API quotas
-
Monitoring
- Performance metrics
- Error tracking
- Usage statistics
Next Steps
- Explore State Management
- Learn about Custom Agents
- Review Technical Documentation